Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Psychiatry Investigation ; : 759-765, 2019.
Article in English | WPRIM | ID: wpr-760904

ABSTRACT

OBJECTIVE: Cyanidin-3-glucoside (C3G), is a component of anthocyanin, have been considered to positively influence cognition and be beneficial for the prevention and treatment of dementia. We aimed to assess the safety and efficacy of cyanidin-3-glucoside-rich Oryza sativa L. (black rice) extract on cognitive function. METHODS: A 12-weeks double-blind randomized, placebo controlled trial assessed safety and cognitive outcomes in participants with subjective memory impairment (n=48) following consumption of 6 black rice extract capsules or a placebo. Cognitive function was assessed using the ADAS-cog and the CERAD-K. Subjective memory impairment also assessed. Safety was assessed by hematologic blood test, urine analysis, and participant reports of adverse events. RESULTS: There was significant improvement on subjective memory in intervention group. There was no statistically significant difference in objective cognitive outcomes following 12 weeks of consuming black rice extract. ADAS-cog scores, however, trended toward improvement in the intervention group compared to the placebo group. There was no adverse event. CONCLUSION: Although significant improvement in objective cognitive function was not proved, we found that C3G-rich Oryza sativa L. extract improves subjective memory in this study. Therefore the results may be informative of the possible effectiveness of the C3G-rich Oryza sativa L. on cognitive function.


Subject(s)
Adult , Humans , Anthocyanins , Capsules , Cognition , Dementia , Hematologic Tests , Memory , Oryza
2.
The Korean Journal of Physiology and Pharmacology ; : 689-696, 2018.
Article in English | WPRIM | ID: wpr-727856

ABSTRACT

Increasing evidence implicates changes in [Ca²⁺]i and oxidative stress as causative factors in amyloid beta (Aβ)-induced neuronal cell death. Cyanidin-3-glucoside (C3G), a component of anthocyanin, has been reported to protect against glutamate-induced neuronal cell death by inhibiting Ca²⁺ and Zn²⁺ signaling. The present study aimed to determine whether C3G exerts a protective effect against Aβ₂₅₋₃₅-induced neuronal cell death in cultured rat hippocampal neurons from embryonic day 17 fetal Sprague-Dawley rats using MTT assay for cell survival, and caspase-3 assay and digital imaging methods for Ca²⁺, Zn²⁺, MMP and ROS. Treatment with Aβ25–35 (20 µM) for 48 h induced neuronal cell death in cultured rat pure hippocampal neurons. Treatment with C3G for 48 h significantly increased cell survival. Pretreatment with C3G for 30 min significantly inhibited Aβ₂₅₋₃₅-induced [Zn²⁺]i increases as well as [Ca²⁺]i increases in the cultured rat hippocampal neurons. C3G also significantly inhibited Aβ₂₅₋₃₅-induced mitochondrial depolarization. C3G also blocked the Aβ₂₅₋₃₅-induced formation of ROS. In addition, C3G significantly inhibited the Aβ₂₅₋₃₅-induced activation of caspase-3. These results suggest that cyanidin-3-glucoside protects against amyloid β-induced neuronal cell death by reducing multiple apoptotic signals.


Subject(s)
Animals , Rats , Amyloid , Anthocyanins , Caspase 3 , Cell Death , Cell Survival , Membrane Potential, Mitochondrial , Neurons , Neuroprotection , Oxidative Stress , Rats, Sprague-Dawley
3.
Experimental Neurobiology ; : 129-138, 2018.
Article in English | WPRIM | ID: wpr-714113

ABSTRACT

Rice is the most commonly consumed grain in the world. Black rice has been suggested to contain various bioactive compounds including anthocyanin antioxidants. There is currently little information about the nutritional benefits of black rice on brain pathology. Here, we investigated the effects of black rice (Oryza sativa L., Poaceae) extract (BRE) on the hippocampal neuronal damage induced by ischemic insult. BRE (300 mg/kg) was orally administered to adult male C57BL/6 mice once a day for 21 days. Bilateral common carotid artery occlusion (BCCAO) was performed for 23 min on the 8th day of BRE or vehicle administration. Histological analyses conducted on the 22nd day of BRE or vehicle administration revealed that administering BRE profoundly attenuated neuronal cell death, inhibited reactive astrogliosis, and prevented loss of glutathione peroxidase expression in the hippocampus when compared to vehicle treatment. In addition, BRE considerably ameliorated BCCAO-induced memory impairment on the Morris water maze test from the 15th day to the 22nd day of BRE or vehicle administration. These results indicate that chronic administration of BRE is potentially beneficial in cerebral ischemia.


Subject(s)
Adult , Animals , Humans , Male , Mice , Anthocyanins , Antioxidants , Brain , Brain Ischemia , Carotid Artery, Common , Cell Death , Glutathione Peroxidase , Hippocampus , Memory , Neurons , Neuroprotection , Oryza , Pathology , Water
4.
The Korean Journal of Physiology and Pharmacology ; : 101-109, 2016.
Article in English | WPRIM | ID: wpr-728546

ABSTRACT

Reducing [Mg2+]o to 0.1 mM can evoke repetitive [Ca2+]i spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM [Mg2+]o are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether Ca2+ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM [Mg2+]o for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type Ca2+ channel antagonist nimodipine, which blocked 0.1 mM [Mg2+]o-induced [Ca2+]i spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the [Ca2+]i spikes. The intracellular Ca2+ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the [Ca2+]i spikes. While Go6976, a specific inhibitor of PKCalpha had no effect on the tolerance, both the PKCepsilon translocation inhibitor and the PKCzeta pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the [Ca2+]i spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low [Mg2+]o preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the [Ca2+]i spike-induced activation of PKCepsilon and PKCxi, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.


Subject(s)
Animals , Rats , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cell Death , Cycloheximide , N-Methylaspartate , Neurons , Nimodipine , Phosphatidylinositol 3-Kinases , Phosphotransferases , Receptors, AMPA , Seizures
5.
Natural Product Sciences ; : 20-24, 2015.
Article in English | WPRIM | ID: wpr-32660

ABSTRACT

Cyanidin-3-glucoside (C3G) and cyanidin-3-rutinoside (C3R) were isolated by high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1 : 3 : 1 : 5 : 0.01, v/v) to give pure C3G (34.1 mg) and C3R (14.3 mg) from 1.5 g crude mulberry fruit extract. Using the pure C3G and C3R, a reliable high-performance liquid chromatography (HPLC) method was developed and validated to determine the C3G and C3R contents in mulberry fruit. C3G and C3R were separated simultaneously using an Eclipse XDB-C18 column (4.6 x 250 mm I.D., 5 microm) coupled with a photodiode array detector (PDA). The gradient elution of the mobile phase consisting of acetonitrile (0.5% formic acid) and water (0.5% formic acid) was applied (1.0 mL/min), and the detection wavelength was 520 nm. The calibration curves of C3G and C3R showed good linearity (both with r2 = 0.9996) in the concentration range 15.625 - 500 microg/mL, and the relative standard deviations (RSD%) of intra- and interday variability were in the ranges 2.1 - 8.2% and 4.1 - 17.1%, respectively. The accuracies were ranged 96.5 - 102.6% for C3G and C3R, respectively. The developed HPLC method was used to determine the contents of C3G and C3R in newly harvested mulberry from eight different provinces of Korea.


Subject(s)
Calibration , Chromatography, High Pressure Liquid , Chromatography, Liquid , Countercurrent Distribution , Fruit , Korea , Morus , Water
6.
Natural Product Sciences ; : 30-33, 2015.
Article in English | WPRIM | ID: wpr-32658

ABSTRACT

Anthocyanins are water soluble plant pigments which are responsible for the blue, red, pink, violet colors in several plant organs such as flowers, fruits, leaves and roots. In recent years, anthocyanin-rich foods have been favored as dietary supplements and health care products due to diverse biological activities of anthocyanins including antioxidant, anti-allergic, anti-diabetic, anti-microbial, anti-cancer and preventing cardiovascular disease. High-performance countercurrent chromatography (HPCCC) coupled with reversed-phase medium pressure liquid chromatography (RP MPLC) method was applied for the rapid and efficient isolation of cyanidin 3-glucoside (C3G) and peonidin 3-glucoside (P3G) from black rice (Oryza sativa L., Poaceae). The crude black rice extract (500 mg) was subjected to HPCCC using two-phase solvent system composed of tert-butyl methyl ether/n-butanol/acetonitrile/0.01% trifluoroacetic acid (TBME/B/A/0.01% TFA, 1 : 3 : 1 : 5, v/v, flow rate - 4.5 mL/min, reversed phase mode) to give enriched anthocyanin extract (37.4 mg), and enriched anthocyanin extract was sequentially chromatographed on RP-MPLC to yield C3G (16.5 mg) and P3G (8.7 mg). The recovery rate and purity of isolated C3G were 76.0% and 98.2%, respectively, and those of P3G were 58.3% and 96.3%, respectively. The present study indicates that HPCCC coupled with RP-MPLC method is more rapid and efficient than multi-step conventional column chromatography for the separation of anthocyanins.


Subject(s)
Anthocyanins , Cardiovascular Diseases , Chromatography , Chromatography, Liquid , Countercurrent Distribution , Delivery of Health Care , Dietary Supplements , Flowers , Fruit , Plants , Trifluoroacetic Acid , Viola
7.
The Korean Journal of Physiology and Pharmacology ; : 517-524, 2014.
Article in English | WPRIM | ID: wpr-727691

ABSTRACT

Phasic and tonic gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the GABA(A) receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via Ca2+ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.


Subject(s)
Animals , Rats , Electronic Data Processing , Bicuculline , Brain , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cyclic AMP-Dependent Protein Kinases , Inhibitory Postsynaptic Potentials , Membrane Potentials , Nervous System , Neurons , Protein Kinases , Receptors, GABA-A , Visual Cortex
8.
The Korean Journal of Physiology and Pharmacology ; : 297-305, 2014.
Article in English | WPRIM | ID: wpr-728465

ABSTRACT

Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free Ca2+ concentration ([Ca2+]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP (100microM) for 90 sec induced [Ca2+]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside (1micro g/ml to 100microg/ml) for 30 min inhibited the ATP-induced [Ca2+]i increases in a concentration-dependent manner (IC50=15.3microg/ml). Pretreatment with cyanidin-3-glucoside (15microg/ml) for 30 min significantly inhibited the ATP-induced [Ca2+]i responses following removal of extracellular Ca2+ or depletion of intracellular [Ca2+]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [Ca2+]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [Ca2+]i responses in the presence of nimodipine and omega-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [Ca2+]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular Ca2+ chelator BAPTA-AM or the mitochondrial Ca2+ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular Ca2+ through the nimodipine and omega-conotoxin-sensitive and -insensitive pathways and the release of Ca2+ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting Ca2+-induced mitochondrial depolarization.


Subject(s)
Animals , Adenosine , Adenosine Triphosphate , Calcium , Calcium Signaling , Flavonoids , Ion Channels , Ion Transport , Membrane Potential, Mitochondrial , Nimodipine , omega-Conotoxins , PC12 Cells , Reactive Oxygen Species , Receptors, Purinergic P2X2 , Thapsigargin
9.
The World Journal of Men's Health ; : 239-246, 2013.
Article in English | WPRIM | ID: wpr-194729

ABSTRACT

PURPOSE: To evaluate the anti-apoptotic effect of the antioxidant reaction of anthocyanin on the prostate in an andropause animal model. MATERIALS AND METHODS: Sprague-Dawley rats were divided into three groups (n=12 in each): control (Group I), andropause (Group II), andropause treated with anthocyanin (Group III). For induction of andropause, Group II and III underwent bilateral orchiectomy. Group III was treated with daily oral anthocyanin (160 mg/kg) for 8 weeks. After 8 weeks, the rats were sacrificed and their blood and prostates were examined pathohistologically and evaluated for oxidative stress and apoptosis. Oxidative stress was assessed by the activity of superoxide dismutase (SOD) and apoptosis in the prostate was identified by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling assay. RESULTS: Group II showed markedly increased activity of SOD in serum over that observed in Group I, whereas the rats in Group III showed reduced oxidative stress compared to Group II. Despite no significant differences in prostate weight between Group II and III (p=0.078), the apoptotic index was significantly greater in Group II than Group I, and was significantly lesser in Group III than Group II. CONCLUSIONS: We suggest that the oxidative stress caused by low testosterone may be another inducer of apoptosis, and this apoptosis may partly contribute to the overall apoptosis of the prostate in the andropause animal model. Therefore, anthocyanin supplementation may contribute to preventing excessively rapid cell death by apoptosis in the prostate in an animal model of andropause.


Subject(s)
Animals , Male , Rats , Andropause , Anthocyanins , Antioxidants , Apoptosis , Cell Death , Models, Animal , Orchiectomy , Oxidative Stress , Prostate , Rats, Sprague-Dawley , Superoxide Dismutase , Testosterone
10.
The Korean Journal of Physiology and Pharmacology ; : 65-70, 2012.
Article in English | WPRIM | ID: wpr-727556

ABSTRACT

Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-week-old rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-HT2 receptors, but not by the activation of either 5-HT1A or 5-HT3 receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.


Subject(s)
Adult , Animals , Humans , Rats , Aging , Brain , Citalopram , Critical Period, Psychological , Depression , Dominance, Ocular , Fluoxetine , Long-Term Potentiation , N-Methylaspartate , p-Chloroamphetamine , Plastics , Receptors, Serotonin, 5-HT3 , Serotonin , Visual Cortex
11.
The Korean Journal of Physiology and Pharmacology ; : 21-28, 2010.
Article in English | WPRIM | ID: wpr-727345

ABSTRACT

Phenolic compounds affect intracellular free Ca2+ concentration ([Ca2+]i) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced Ca2+ signaling in PC12 cells using fura-2-based digital Ca2+ imaging and whole-cell patch clamping. Treatment with ATP (100 micrometer) for 90 s induced increases in [Ca2+]i in PC12 cells. Pretreatment with octyl gallate (100 nM to 20 micrometer) for 10 min inhibited the ATP-induced [Ca2+]i response in a concentration-dependent manner (IC50=2.84 micrometer). Treatment with octyl gallate (3 micrometer) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular Ca2+ with nominally Ca2+-free HEPES HBSS or depletion of intracellular Ca2+ stores with thapsigargin (1 micrometer). Treatment for 10 min with the L-type Ca2+ channel antagonist nimodipine (1 micrometer) significantly inhibited the ATP-induced [Ca2+]i increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the [Ca2+]i increase induced by 50 mM KCl. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein (50 micrometer) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced [Ca2+]i increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of Ca2+ from extracellular space and P2Y receptor-induced release of Ca2+ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced Ca2+ responses by inhibiting the secondary activation of voltage-gated Ca2+ channels.


Subject(s)
Animals , Adenosine Triphosphate , Calcium , Constriction , Extracellular Space , Gallic Acid , Genistein , HEPES , Indoles , Maleimides , Nimodipine , PC12 Cells , Phenol , Protein Kinase C , Protein-Tyrosine Kinases , Thapsigargin
12.
The Korean Journal of Physiology and Pharmacology ; : 337-343, 2010.
Article in English | WPRIM | ID: wpr-728362

ABSTRACT

Long-term potentiation (LTP) and long-term depression (LTD) have both been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. In a previous study, we suggested that a developmental increase in serotonin [5-hydroxytryptamine (5-HT)] might be involved in the decline of LTP, since 5-HT inhibited its induction. In the present study, to further understand the role of 5-HT in a developmental decrease in plasticity, we investigated the effect of 5-HT on the induction of LTD in the pathway from layer 4 to layer 2/3. LTD was inhibited by 5-HT (10 micrometer) in 5-week-old rats. The inhibitory effect was mediated by activation of 5-HT2 receptors. Since 5-HT also regulates the development of visual cortical circuits, we also investigated the role of 5-HT on the development of inhibition. The development of inhibition was retarded by chronic (2 weeks) depletion of endogenous 5-HT in 5-week-old rats, in which LTD was reinstated. These results suggest that 5-HT regulates the induction of LTD directly via activation of 5-HT2 receptors and indirectly by regulating cortical development. Thus, the present study provides significant insight into the roles of 5-HT on the development of visual cortical circuits and on the age-dependent decline of long-term synaptic plasticity.


Subject(s)
Animals , Rats , Depression , Dominance, Ocular , gamma-Aminobutyric Acid , Long-Term Potentiation , Plastics , Serotonin , Visual Cortex
13.
The Korean Journal of Physiology and Pharmacology ; : 399-405, 2010.
Article in English | WPRIM | ID: wpr-728353

ABSTRACT

Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in GABAA receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of GABAA receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.


Subject(s)
Animals , Rats , Electric Stimulation , gamma-Aminobutyric Acid , Inhibitory Postsynaptic Potentials , Kinetics , Membranes , Plastics , Visual Cortex
14.
The Korean Journal of Physiology and Pharmacology ; : 43-49, 2008.
Article in English | WPRIM | ID: wpr-728609

ABSTRACT

Flavonoids have been shown to affect calcium signaling in neurons. However, there are no reports on the effect of apigenin on glutamate-induced calcium signaling in neurons. We investigated whether apigenin affects glutamate-induced increase of free intracellular Ca2+concentration ([Ca2+]i) in cultured rat hippocampal neurons, using fura-2-based digital calcium imaging and microfluorimetry. The hippocampal neurons were used between 10 and 13 days in culture from embryonic day 18 rats. Pretreatment of the cells with apigenin (1micrometerto 100micrometer for 5 min inhibited glutamate (100 micrometer 1 min) induced [Ca2+]i increase, concentration-dependently. Pretreatment with apigenin (30micrometer for 5 min significantly decreased the [Ca2+]i responses induced by two ionotropic glutamate receptor agonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, 10 micrometer 1 min) and N-methyl-D-aspartate (NMDA, 100 micrometer 1 min), and significantly inhibited the AMPA-induced peak currents. Treatment with apigenin also significantly inhibited the [Ca2+]i response induced by 50 mM KCl solution, decreased the [Ca2+]i responses induced by the metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG, 100micrometer 90 s), and inhibited the caffeine (10 mM, 2 min)-induced [Ca2+]i responses. Furthermore, treatment with apigenin (30micrometer significantly inhibited the amplitude and frequency of 0.1 mM [Mg2+o-induced [Ca2+]i spikes. These data together suggest that apigenin inhibits glutamate-induced calcium signaling in cultured rat hippocampal neurons.


Subject(s)
Animals , Rats , Apigenin , Caffeine , Calcium , Calcium Signaling , Glutamic Acid , N-Methylaspartate , Neurons , Receptors, Glutamate , Receptors, Metabotropic Glutamate
15.
Journal of Korean Society of Endocrinology ; : 302-310, 2006.
Article in Korean | WPRIM | ID: wpr-137332

ABSTRACT

BACKGROUND: The incidence of atherosclerosis is well correlated with the progression of type 2 diabetes mellitus. High plasma glucose in uncontrolled diabetic patients evokes many vascular complications such as atherosclerosis. Specifically, high glucose was reported to induce thrombospondin-1 (TSP-1), which activates matrix metalloproteinase-2 (MMP-2) and leads to the invasion of vascular smooth muscle cells (VSMCs) into the intima. Catechins with antioxidant effects are known to inhibit MMP-2 activity. Therefore, this study was aimed at revealing the effect of epicatechin, one of catechins, on high glucose-induced TSP-1 and the invasiveness of VSMCs. METHODS: VSMCs were primarily isolated from Sprague-Dawley rat aorta. The VSMCs were incubated with different doses (30, 100 and 300 micrometer) of epicatechin under high glucose concentration (30 mM). The TSP-1 protein and mRNA expressions were analyzed by performing Western blotting and Northern blot analyses, respectively. RT-PCR was performed to observe the MMP-2 mRNA expression. Gelatin zymography was performed for the measurement of MMP-2 activity. Invasion assays were performed to evaluate the invasiveness of VSMCs. RESULTS: Epicatechin inhibited the high glucose-induced TSP-1 expression and the MMP-2 activity in a dose-dependent manner. Also, epicatechin inhibited the high glucose-induced invasiveness of VSMCs across the matrix barrier in a dose-dependent fashion. CONCLUSION: Collectively, epicatechin may prevent the high glucose-induced proliferation and invasion of VSMCs by inhibiting the TSP-1 expression and the MMP-2 activity. Therefore, epicatechin appears to play a protective role in the development of atherosclerosis.


Subject(s)
Animals , Humans , Rats , Antioxidants , Aorta , Atherosclerosis , Blood Glucose , Blotting, Northern , Blotting, Western , Catechin , Diabetes Mellitus, Type 2 , Gelatin , Glucose , Incidence , Matrix Metalloproteinase 2 , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , RNA, Messenger , Thrombospondin 1
16.
Journal of Korean Society of Endocrinology ; : 302-310, 2006.
Article in Korean | WPRIM | ID: wpr-137329

ABSTRACT

BACKGROUND: The incidence of atherosclerosis is well correlated with the progression of type 2 diabetes mellitus. High plasma glucose in uncontrolled diabetic patients evokes many vascular complications such as atherosclerosis. Specifically, high glucose was reported to induce thrombospondin-1 (TSP-1), which activates matrix metalloproteinase-2 (MMP-2) and leads to the invasion of vascular smooth muscle cells (VSMCs) into the intima. Catechins with antioxidant effects are known to inhibit MMP-2 activity. Therefore, this study was aimed at revealing the effect of epicatechin, one of catechins, on high glucose-induced TSP-1 and the invasiveness of VSMCs. METHODS: VSMCs were primarily isolated from Sprague-Dawley rat aorta. The VSMCs were incubated with different doses (30, 100 and 300 micrometer) of epicatechin under high glucose concentration (30 mM). The TSP-1 protein and mRNA expressions were analyzed by performing Western blotting and Northern blot analyses, respectively. RT-PCR was performed to observe the MMP-2 mRNA expression. Gelatin zymography was performed for the measurement of MMP-2 activity. Invasion assays were performed to evaluate the invasiveness of VSMCs. RESULTS: Epicatechin inhibited the high glucose-induced TSP-1 expression and the MMP-2 activity in a dose-dependent manner. Also, epicatechin inhibited the high glucose-induced invasiveness of VSMCs across the matrix barrier in a dose-dependent fashion. CONCLUSION: Collectively, epicatechin may prevent the high glucose-induced proliferation and invasion of VSMCs by inhibiting the TSP-1 expression and the MMP-2 activity. Therefore, epicatechin appears to play a protective role in the development of atherosclerosis.


Subject(s)
Animals , Humans , Rats , Antioxidants , Aorta , Atherosclerosis , Blood Glucose , Blotting, Northern , Blotting, Western , Catechin , Diabetes Mellitus, Type 2 , Gelatin , Glucose , Incidence , Matrix Metalloproteinase 2 , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , RNA, Messenger , Thrombospondin 1
17.
Journal of Korean Society of Endocrinology ; : 353-361, 2005.
Article in Korean | WPRIM | ID: wpr-124045

ABSTRACT

BACKGROUND: Activation of G-protein coupled-somatostatin receptors induces the release of calcium from inositol 1, 4, 5-trisphosphate-sensitive intracelluar stores. G-protein-coupled receptor signaling decreases with prolonged exposure to an agonist. SEBJECTS and METHODS: Fura-2-based digital Ca2+ imaging was used to study the effects of prolonged exposure to an agonist on the somatostatin-induced intracellular Ca2+ concentration([Ca2+]i) increases in NG108-15 cells, which were differentiated with CO2-independent medium and 10micrometer forskolin. RESULTS: Exposure to somatostatin(1micrometer) for 30 min completely desensitized the NG108-15 cells to a second somatostatin-induced response. The cells recovered gradually over 20 min following washout of the somatostatin. The desensitization was not due to depletion of the intracellular Ca2+ stores, and pretreatment for 30 min with bradykinin(100nM), which activates phospholipase C, or DADLE(D-Ala2-D-Leu5 enkephalin, 1microM), which activates phospholipase C, failed to cross-desensitize the somatostatin-evoked [Ca2+]i increases. Treatment with 8-cpt-cAMP(0.1mM) for 30min did not influence the somatostatin-induced[Ca2+]i increases. Phorbol 12, 13-dibutyrate(PdBu, 1microM) blocked the response completely. Down-regulation of PKC due to 24 h exposure of PdBu (1microM) inhibited the somatostatin-induced desensitization. CONCLUSION: Prolonged exposure of somatostatin to NG108-15 cells desensitized the somatostatin-induced release of Ca2+ from the intracelluar store, with protein kinase C also involved in the desensitization.


Subject(s)
Calcium , Colforsin , Down-Regulation , Enkephalins , GTP-Binding Proteins , Inositol , Protein Kinase C , Protein Kinases , Somatostatin , Type C Phospholipases
18.
The Korean Journal of Physiology and Pharmacology ; : 295-300, 2004.
Article in English | WPRIM | ID: wpr-727786

ABSTRACT

Serotonin (5-hydroxytroptamine, 5-HT) has been shown to affect the induction of long-term potentiation (LTP) in the cortex such as the hippocampus, the visual cortex and the prefrontal cortex. Fluoxetine, as a selective serotonin reuptake inhibitor, is used in the management of a wide variety of psychological diseases. To study the effect of fluoxetine on the induction of LTP, we recorded the field potential in layer II/III of the frontal cortex from 3-wk-old. LTP was induced in horizontal input by theta burst stimulation (TBS). TBS with two-folds intensity of the test stimulation induced LTP, which was blocked by application of D-AP5 (50microM), an NMDA receptor antagonist. Whereas bath application of 5-HT (10microM) inhibited the induction of LTP, treatment with the 5-HT depleting agent, para-chloroamphetamine (PCA, 10microM), for 2hr did not affect the induction of LTP. Bath application of fluoxetine (1, 3, and 10microM) suppressed the induction of LTP in concentration-dependent manner, however, fluoxetine did not inhibit the induction of LTP in 5-HT-depleted slices. These results indicate that fluoxetine may inhibit the induction of LTP by modulating serotonergic mechanism in the rat frontal cortex.


Subject(s)
Animals , Rats , Baths , Fluoxetine , Hippocampus , Long-Term Potentiation , N-Methylaspartate , p-Chloroamphetamine , Prefrontal Cortex , Serotonin , Visual Cortex
19.
The Korean Journal of Physiology and Pharmacology ; : 57-63, 2004.
Article in English | WPRIM | ID: wpr-728502

ABSTRACT

Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for [3H]-inositol phosphates (IPs). Treatment with ATP (100microM) for 2 min induced [Ca2+]i increases. The ATP-induced [Ca2+]i increases were significantly decreased by removal of extracellular Ca2+ and treatment with the inhibitor of endoplasmic reticulum Ca2+ ATPase thapsigargin (1microM). Treatment with fluoxetine for 5 min blocked the ATP-induced [Ca2+]i increase concentration-dependently. Treatment with fluoxetine (30microM) for 5 min blocked the ATP-induced [Ca2+]i increase following removal of extracellular Ca2+ and depletion of intracellular Ca2+ stores. While treatment with the L-type Ca2+ channel antagonist nimodipine for 10 min inhibited the ATP-induced [Ca2+]i increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM K+-induced [Ca2+]i increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced [3H]-IPs formation. Collectively, we conclude that fluoxetine inhibits ATP-induced [Ca2+]i increases in PC12 cells by inhibiting both an influx of extracellular Ca2+ and a release of Ca2+ from intracellular stores without affecting IPs formation.


Subject(s)
Animals , Adenosine Triphosphate , Calcium Signaling , Calcium , Calcium-Transporting ATPases , Endoplasmic Reticulum , Fluoxetine , Inositol Phosphates , Ion Channels , Nimodipine , PC12 Cells , Phosphates , Thapsigargin
20.
Korean Journal of Anesthesiology ; : 402-409, 2003.
Article in Korean | WPRIM | ID: wpr-60284

ABSTRACT

BACKGROUND: Fluoxetine (Prozac), a selective serotonin reuptake inhibitor, has been shown to be effective in the treatment of depression. We investigated the effects of norfluoxetine, the major active metabolite of fluoxetine, on voltage-gated K+ currents in primary cultured hippocampal neurons, and determined the potency and modes of actions of norfluoxetine. METHODS: Voltage-gated K+ currents were studied in primary cultured rat hippocampal neurons using the whole-cell configuration of the patch-clamp technique. Electrophysiological recordings were done in hippocampal neurons between 5-10 days in culture. Transient A-type K+ currents (KA) and delayed-rectifier K+ (KDR) currents were isolated from whole-cell K+ currents using a pulse protocol. RESULTS: Norfluoxetine accelerated the decay rate of whole-cell K+ currents, and thus decreased the current amplitude at the end of a pulse in a concentration-dependent manner. Norfluoxetine inhibited KA and KDR currents in a concentration-dependent manner with IC50's of 0.93 and 0.70micro M, respectively. Norfluoxetine also reduced the areas of KA currents and the steady-state KDR current over the range of test potentials, and the reduction was voltage-dependent (greater increase at more positive potentials). From the onset of the fractional block of KA currents by norfluoxetine during the initial 40 ms of a clamp step, we calculated k1 = 53.26/micro M.s for the association rate constant, and k2 = 70.24/s for the dissociation rate constant. The resulting apparent KD was 1.32micro M, which is similar to the IC50 value obtained from the concentration-response curve. CONCLUSIONS: Our results indicate that norfluoxetine, the major metabolite of fluoxetine, at therapeutic levels, produces a concentration- and voltage-dependent inhibition of KA and KDR currents in primary cultured hippocampal neurons. These effects could perturb the neuronal excitability in the hippocampus, and may contribute to the therapeutic antidepressant action of fluoxetine.


Subject(s)
Animals , Rats , Depression , Fluoxetine , Hippocampus , Inhibitory Concentration 50 , Neurons , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL